ait Pia

eed

——s

621, 28 B 886

HYDRAULIC POWER DEVELOPMENT

“ON EAST CANADA CREEK, NEW YORK

G. W. BUCK. W. J. DEVENEY G. D. LETTERMANN

ARMOUR INSTITUTE OF TECHNOLOGY 1910

AT 175

Buck, G. W.

‘Proposed hydraulic power development on East Canada

FOR UST Wt) LIGRARY ONLY

bs i, ae ny ae : a. i i eee

Bes Rue vo oe oo’ ss

nm ASS re

ay ry ae iu. baa nian fi Nes

ais % eae mh, ve

a" : Le ce . co? ci ey me ay pore: en an oo

a pur oe roe el: Vy

ce oat? soe as

ys pany ‘anh

MAES

iis Nei a hi an we

Pah mai >.

« 7 Bey tras a

PROPOSED HYDRAULIC POWER DEVELOPMENT. ON EAST CANADA CREEK,

AT INGHAM MILLS, NEW YORK.

A) EE Si Ss Presented By

& Warner. Buck.

To The PRESIDENT AND FACULTY OF ARMOUR INSTITUTE OF TECHNOLOGY For the Degree of Bachelor of Science in Civil Engineering Having Completed The Prescribed Course In

Civil Engineering.

ILLINOIS INSTITUTE OF TECHNOLOGY PAUL V. GALVIN LIBRARY

35 WEST 33RD STREET

CHICAGO, IL 60615 at

TYG OINVEC HEWOT OLIUARCYH Gieotont h : 10 | <HNHAD AGATAD TEAS TA SOY WH ,2ccIM MAHDMI

e158 2 eae

Vi betnseetT ; Jantd aonanll &

she pecenpne de apes

Pd “opal ed? of YRIUOAT (MA THECTOUTT ae) a YOOLOMHOET TO ATUTETEKI AVOMAA

to gerged ont 10 anineontgal Lkyt) nI soneto2? to toLlodosd sewod bsdinroastT eAT hetelqmod gouivsH ni.

-Boinssntant [tvto

¥OO.JOMHOST 30 STUTITeMI BIOMNN YAAASI VIVIAD VV JUAg TARTS GHEE T23W aE

ee ~ >See Sp c " @F008 i ,ODADING WEN wh be eter “e \ ig con 2 IHD

on. eS > ~ aT

~~ X ive)

“ee aN. ys % Sty + eerteintalincalin « Ln Ut nN nt wen mery TR. » ed

‘5 ee ee oe ew

BS5S INDEX.

i

INTRODUCTION on 233-22 n na en sen eet tren nn en een ena n---=- iL HYDRAULIC CONDITIONS AND DEVELOPMENT --~------------------ 3 THE DAM onan anne ee ee re ee on ee eee ene een nen= 8 THE PIPE LINE --~-----------~ eae enn nen ne === 2 == =~16 THE POWER-HOUSE -<---= ~--- 2-22-2222 2-222 ~ --- === - = === 21 INGHAM MILLS AND VICINITY ---------------------+-- Plate 1 SITE OF PROPOSED PROJECT -------------~~---------- " 2 PROFILE OF RETAINING SECTION -----~---------------- " 3 PROFILE OF SPILLWAY SECTION ---~-------~---~------- " 4 DOWN- STREAM ELEVATION OF DAM ---~---------------- " 5 CROSS-SECTION OF DAM, SPILLWAY AND INTAKE -------~ 6 SLUICE GATE AND OPERATING STAND --~-------------- e 7

GENERAL SECTIONS OF PIPE LINE AND SURGE TANK ---~Plates 8-10 GENERAL SECTIONS OF POWER-HOUSE ---~-----=------= Ls 13-18

e2idi

4 J ee An oe SE Oe ee a ae Ee ae Oe 2 eH Ow a ee on siahetataheieahenaraiaksl stabatanmiatanenenananele 0! ¢ it

4 : ce. & OS OO Si Os SF Oe Oe Ree OF OE Bd Om EY OH OF OW SN me 5 En em NY Oh RU Se OE Om Ne Oe Oe Oe EN Am eK NR Oe Gy A Oe One BM me Oe wid eas ied N ; 4 sha

n at i

" pa _ ea ROI POE EVORT Cae: OT OF s ees Menem ry y soe

INTRODUCTION.

Natural water powers have long held an important place among the sources of energy available for industrial purposes. Within the past few years, the progress made in the methods for converting mechanical into electrical energy, and the inerease in the distance to which the latter can be economical- ly transmitted, have led to the utilization of many water powers. The advantages to any community of cheap and re- liable power are so great, that a steady growth of this kind is to be expected. Apart from manufacturers of all kinds, the purely municipal purposes of lighting and electric traction will of themselves, absorb a considexahie amount of power.

The investigation of any water power project should include a careful study of all available data relating to the topographical and meteorological factors that effect the water supply and that obtain on the drainage area of the stream on which the proposed hydraulic power development is projected. The present condition of these factors is readily obtainable by careful observation and surveys, but the most difficult and yet the most important information needed for the correct understanding of the project, is the variations from the present conditions that have occurred in the past and that are therefore liable to re-occur in the

future.

sosis tnedrogmt ns bles nok oven Browog redew Lartusd al asa orig feixtiesbat +ot oLdsttsve wrens ‘to # 90TU OR ost

eborniom et ni sbem ecorzotq ent (21S8Y wet sesq oats

siiers att to diwotz wseete s sand. steer 08 ous sowog exc geboidx [fe to saetadee side mort ot eg A sbedoogxe od “i Strsoeflo ne aatinst£ To ser oytng feqiotnum yrorwt

to domoms By Pe anod « drosds cats pene to tit notte,

goette set er1otost fisptyoloicesem DSB Ceotdqerzoqod ed¢ to sere eysrieib ons mo ckadeto sscd bane ylqaue ey ei stnomgolevsh rewog oilusxbh ww ber ogorq edt so ketw no hy ei erotoet seend to moitibmoo tnesetq oT sbetoo ore

stud ,ayevine bre noltevreado Lstetao yd efdentstde vi Noitsenotai tnstrogmi teom odd sexy bas tino lTt2b tRom ¢ ent ef ,soetorq ent to nolbisterebsas Soert0o ent ‘tot bebee: beiwso90 Svad decd emoisibnos snegerg ert wort anolt. :

edt ni au990-e1 of eldsif sxoteredd eis tend bas seeg eni

Re

On the correct intrepretation cf the available data the success of the project, or at least the economy of the installation, depends, especially if, as is usually the case, it is desired to develop the plant to its economical maximum.

The state of New York is richly endowed with natural advantages favorable to a full utilization of its vast water power resources. On its many rivers, especially those springing from the prolific water producing region of the Adirondacks, there are many advantageous sites for creating new developments, and for increasing by artificial storage the capacity of existing power plants.

Ingham Mills is about five miles from Little Falls, New York and is reached by a branch of the New York Central Railroad.

The situation of Ingham Mills is exceptionally ad- vantageous for a hydraulic power plant, being in the center of a fairly well developed manufacturing district. Within a radius of thirty miles are Gloversville, Johnstown, Fonda and Canajoharie. The present use of electric current for lighting, traction and manufacturing purposes within this radius is great and the constantly increasing demand insures a large market.

The object of this thesis is the profitable development

eat stsb e{dslisve ant to notisseiqertnt doorr0o | ne eis to wmomoos eft tesef $e 10 ,tooborg end Yo ea

J ha &

x yr « Ne " ar **) es fsirten isiw bewobme yidolx eit weoY well to etate oT a oF 8 iy ee ee t6tew desv eit to noliestiisu [int s ot elderovst station ¥

scons yiistoeqes ,etovix qwam esi 10) seeotoest xewog ,

E odd To molysr gutoubo1g vesew oLtiforg edd mort gatg wage 3 ve guisseto tot eeita enoezsinavbs ys ets etedd qexonbnortbA ‘i i egetote Lelotttine uw gntesotont rot bas einomgeLeveb wee a . 2 -etnaly vewoq gnitetxe to utlosass ou 4 We ,etist efttit mort aefim oevit tuode ef aLetWimedgeT i. 3 fsijas9. wro0Y wel edt Yo soneid 2 vi bedoset ef brie : .

sbeorlhi

4 “bs vlisnottqeoxe at eLliM msdgnT to moitavtiv ext 5

i setneo edt mi anted ,tnaly 1swog olivetbyd © t0% exo: 3 tae: i sdadiw .tolvsetp get rdon tetribl begoleveb {few vinte® 5 to ee pbhoot ymwotandot ,effiversvold evs eelin wrint to eubhen : a

ot meer! & tot dneriss ofidoole to sen Ineeorg ofl .etredotemed bas

,

ee: Pe aids nidsiw sexoqing galuidestonso bas ttoljosrs, vaatsaat $ a ge aetwent bremeb gutasetoni yliistence ent bas Soo%p et es vo |

aed Betiky 7

in

ry

| eae ee. snemgoleveb eldstitorq odd ef afeods elds to tootdo | el re

3.

of the available water power of East Canada creek at Ingham Mills for the purpose of partially supplying this demand, and it is with the preliminary investigation, design and con-

struction of such project that we shall confine ourselves.

HYDRAULIC CONDITIONS AND DEVELOPMENT.

The requisites of a reservoir site are numerous, among which may be mentioned the following:-

1. There must be an available water supply sufficient to fill the basin.

Ze There must be a basin to hold this supply.

Se There must be a good dam site.

4. There must be suitable materials from which to construct a dam.:

De The foundation must be able to satisfactorily sustain the dan.

6. There must be available lands upon which to put the water.

76 The entire project must be on a commercial basis.

A comprehensive and detailed study of existing topographical maps and hydrographic data on the East Canada creek in the Mohawk system indicated promising opportunities for power development and storage.

East Canada creek is the second important tributary of

medgnI ts wooro sbensD tea to tewoo vetsw eldeftsvs ant to

% te Doe ,bnemebh etnt sniylqaue yiletineg To eeoqing sit sot ell in “109 bas sateeb Mottes i¢eeval yisnimiferq ont dtiw ei dt

sevieetso enftinos [fede ow stadt Sootorg dowe to nolfvorrte -THEVTOINVE GMA 2MOITICUOD OLIUARCYR | fs Brome apotesst ers otie iloviseer 6 to eesteluper eT rf ¥

~tgntwollot edt benotinem ed ysm a cid Fy tnetoit tye sro 19d sw eldatiovs ne od Jaya oxo.dt L stiasd eas fit os

evlqque etdt blod ot niasd « od tenm ae | aS -otie meh boog s od Sen ered? Se ot doinw mort eletretem efdetive ed teum ered? eo | * ue & toms en yLirostoeteissea ot efds ed tam nobtabauot ont hd vg

“mab, estt aisteme

tuq ot sotdw nogg ehral efdelisvs od seam erent «od a stots one

ssleed [etoremmoo 2 mo ed tavm Jootorg etltne oat 6.

gouiteixe to ybute belisieh hie evieneserqmoo A ehenad seek odd no stab oldqeipotbyd Sms ec.sat Leoisqetgoqos settiautiiroggo antatmorg betsolbnl mete yg uwedoM galt mt eet aeaanh: bine nom oLeveb 19 wog ‘tpt

to watudixd Jazdvoqmt baooee ext ef tosro shane) teel

the Mohawk. This creek rises in the south western part of Hamilton County, and flows southerly between Herkimer and Fulton Counties, joining the Mohawk at East creek, about seven miles from Little Falls. Its drainage area above Ingham Mills comprising approximately two hundred and seventy three square miles, contains about thirty small lakes and ponds and numerous swamps and marshes in the region of the head waters. A considerable part of the basin is timber cover- ed. The underlying rock is granitic gneiss in the upper portion of the basin, with limestone in some places. Heavy accumulations of snow occur during the winter.

The principal tributary of East Canada creek is Big Sprite creek, which is the outlet of the East Canada Lakes. The distance from the East Canada Lake outlet to its junction with East Canada creek, is about nine miles. In the first four miles there is a fall of three hundred and ninety feet. The remaining five miles to its mouth, has a fall of two hundred and forty-five feet.

The second tributary of East Canada creek is Spruce creek, which enters it one mile above Dolgeville and drains an area of fifty square miles. The total length from its source in the Eaton Mill pond to its mouth, is about nine miles; the total fall in this distance being approximately five hundred and fifty feet. Just below the Eaton Mill

%o Jieq mietsew dtvos ed} al asada deere eid? .awerloll ent . bis tomiexeH seowted ylredtvoe awolt bns eWaod not ftasit tsods ,deats jest te awedoM ond gataiot ,asitavso) notiot svods sers egsaterb atl effet els3id mort eolim never . Whevee bas bothavd owt Yloteuixotqgs gutaiiqmos efLIM medgnTt bas ssdsl {ism yhrist tyode antsinoo ,aslin sisupe seis $a} to moiger ent mt esdetsm bas sqmewe seni bas ebnog “19veo 1edmis ef ntard oft to tiag gidstebieanoo A wetotew beed tsqqu edt at astena oftinstyg ef aoor saivirsbas oT bo Waeet .ascsi¢ omoe ni enoteomif diiw .atasd edt To nolttt og stetaiw edt aoinsb ay900 wone to amotisluauroos gif ai desto sbens) desk to ersiudtit I[sqtoattq odT weotel sheans? teed oft to taltue edt et dotdw .feeto oftuge mottonst eti oF teL3uo exisd shansd test edt mort eonstalb edT uuot ta1itt eft of .aoitm ania tvode at ,xee 19 shensd tes dtiw oT .test yioatn bas berbosil cenit to [ist s ef srodt actin betbsud ows to {ist e sad ,dévom asi ot .volim svit goiniamet feet ovlit-ytrot bre eomig® ef wesio sbenad tas to yatudind proces ont enisth bas oiLivegfol svods ofim ono tf atesixe Mo tlw ~w#oets esti mott disnef {stot eXxT .eelin ersupe yIIttt to sets ns

9

onin suods ef ,dtvom ett ot booq LLM gotet edd af ei. wlotamtxorgge ymted eonsteth etdd al List Cetot edt jeoltm

{IiM mote® edt woled san\ toot wth? bas betbavd ovtt

et

pond there is a fall of one hundred and eighty feet in two thousand feet. At Salisbury Center, Spruce creek falls eighty- five feet in about nine hundred feet. A number of water power privileges are developed at this point. There is a total of twelve small dams on Spruce creek giving an aggregate fall of about one hundred and eighty feet.

The mean annual rainfall on the East Canada water-shed above Ingham Mills for the past ten years, as disclosed by studies of the United States Weather Bureau reports, is #0 inches.

The conditions on which the proposed development is Sesed Gure obtained from the various water supply papers of the United States Geological Surve y for the past ten years (1899-1909 inclusive), containing the maximum and minimum daily and monthly discharges of the stream at Dolgeville about three miles up stream from Ingham Mills. At this point the discharge of the stream over the dam of the Herkimer County Light and Power Company, is computed from a discharge curve based on United States Geological Survey experiments.

About a mile above Ingham Mills, Gillette creek having a drainage area of approximately seventeen square miles, flows into East Canada creek. The drainage area of the East Canada creek above Dolgeville is two hundred and fifty-six

square miles; thus the total area drained by the stream above

ows mi test ywrigte bre berbavd emo to List 2 ek oxsdt haog -

wUtdate elist usets sewig? ,1etae? wisdelfe® PA toot buaawont

tossw to 1edown A .teot borbmud onta, tuoda ai Soot ovit s af overt .tatog eids ts heqoLeveS ots asgeliving Teweg ms gsivie deeto somrrgs mo ameb (late evlowt Io Isvat s$oet yutdate bas betboasd sno tuode to [Ist etsustage

berte-retsw shbans) sash edt no [istater [evans asom odT

yd Beeoloeth es ,susey med tasq oft tot eLfiM medgal ovode

Ob af ,etrore1 ysersd rodiseW eatst2 betinU edt Yo eselbuite - .eedeak

et taomyolsyveb bsxoqorq edd dofdw no enotiibnes sxAT to exeqeq viicque istew esotiey édt¢ mort bomiatdo stow beead aisey ust tesq od rot y~ ovrw® Leoigolosd aetst? bestia edt

tiumioim brs avomtxem 9 sit giintsines , (evianiont e@oer-eesr)}

‘Suods elitveslo€ ta mse1te et to seqredosih yidtnom bas yiteb

@d3 gniog eidt A wali median] mott msette qu seltm soudd uiawoD YomidieH ent To mab edd tev0 meette ect To eprsedoerh evivo esisdoath sg mort boetyqmoo ai , ynwqmod towel brs Sight winomiiegqxs yorrwe LIsotgoloed astate betiaU no beaad

gatved wooro otsoLltd ,aLLiM medgal evods elim sJyodA: | ,eeiim ersuype neetasvee Ylotemixorqgs to se1s sysiisib 6 tee eit to sers sysatstb oat teers shsae0 tes oft awolt

xXlenytlt das dSorbayd ows af offiveglo@ evods aAse1o shanad

svods meerte ent yi bontetb sets Letot oat awit jeolin orsupe i

4

hs are = : o- 1h? ee

,

6.

Ingham Mills is two hundred and seventy-three sq uare miles. The data as to the discharge at Ingham Mills, were determined by multiplying the various discharge measurements

obtained at Dolgeville by the constant £3 -- 106; 273 being the total drainage area in square miles above Ingham Mills and 256 being the area above Dolgeville. This factor took into account the additional discharge due to Gillette creek. From these data mean monthly discharge curves were plotted. A curve was also plotted showing the daily dis- Charge of the stream for the year 1906, which was a year of

relatively high flood.

The flow of the stream at Ingham Mills varies from a maximum of 35280 second feet to a minimum of 90 second feet. A dam will be constructed at Stewart Landing near the head of Big Sprite creek by means'of which a large service reservoir of 500,000,000 gallons capacity will be created. The function of this reservoir is to augment considerably the minimum discharge of the stream at Ingham Mills.

By constructing a dam across the valley where the stream is about ninety feet wide, a head of one hundred and twenty- five feet can be utilized. It was concluded that using a flow of two hundred and fifty second feet for twenty-four hours, or six hundred second feet for a period of ten hours the maximum power of the stream could be developed throughout

the entire year without the necessity of an emergency steam

saeLlim ousy pe ceitt-yineves bus betbaud ows ef eL{iM medgnTt crow .2lliM medgal te egrsdoeib edt of es steh off . a asdremsiusesom sprssdoalb evnolitar ent setylotdiom vd bestamegeb eve ; OOA 3 dnsteson sit yw effiveplod ts bentstdo merignl ovods esiim eisupa of sete szentsth Istot edt gated toftost alcT .elfivegiol evods gers edt anted cS hrs eLiiM etjellio of omb sgiedoeth Iemoltibds ext Jayogoe ott ood si9w asvio egrsdeath yirtnom assem stsbh seedt moth aero wath ylisb odt gniwode bettoly coals easw avis A -bestold To 18904 B uaw doidw ,d0@L tsey edd x0ot msetta edd to Sgt silo \boolt cgid yLevisslex

8 mort seliev cli{tM medgnt te mso1te edt to wolt oa ~<JeoT Hroose OC To mumtnim s ot ¢oet bnoose O8SE To mumixem To bsed oft rsem sitbast traewet? ts botomeanoo ed [{tw meh A vtowisze1 solvies egisl s solnw to aasam yd daseto otizge gti eff ,batseros ed ifiw yitosgqss anolflss 000,000,003 to eit \idersbienos snemus of et tlovtese: aint to aoktoawt -2{liM madgnl ts oserte ont to on rssion tb ousat toed on

asotte odd stodw yot{ev odt aeotss meh s amttowisanoo yi. -yinews bas bevberd S110 te bse « ,cbtw toot yoatn trods et 8 niten tect bebsfonoo ssw.dI .bosifliitu ed N89 teot evit ~wotevinewd tot test bnosse .yitlt bas betbhayd owt to wolt etgod med to bolieq s 10l Jee% brooer be thband xte 10 Baio tyotfguotnt hegoleveb ed bluoo meette et To rewog momixem oat | ,

7.

Plant. The available power was determined as follows: Let Q= discharge in second feet. H= available head. W= weight of a cubic foot of water

E= efficiency of water wheels

uh Q«H«W«E then Horse Power = EC, a or GOOX/25x G2.5%.85 Howse. = hhh a Saas Te US Le a 550 REO

The proposed development consists of a gravity dam, one hundred and twenty-five feet in height. The main conduit to be a pipe line with an internal diameter of twelve feet. The total length is eleven hundred feet of riveted steel pipe provided with a surge tank fifty eight feet high and forty feet in diameter. The function of the surge tank is to re- lieve the pipe line of excessive pressures due to a sudden clos- ing of the gates in the water wheels, following a quick drop in the demand for power and also to maintain pressures and speed regulation in the station when sudden demands are made for water. The top of the surge tank rises to twenty-five feet above high water level above dam. From the surge tank there will be three riveted steel pipes, each six feet in diameter and four hundred feet. in length, leading directly to the power house. The total hydrostatic head from the flow

line of the reservoir to centers of receivers, will be one hundred and twenty-five feet.

| \ etre fa ‘ewolfot es bentmetesb aew tewoq eldslisvs ont

»J69T broovse nit exredorth =p sod -beed efdsl(tevs <H 1stsw to soot otdse 2 to tdatsew=W

elesdw vetaw to yonotoitts ==

SaWatn®

RE = tewol set we ees

10

. 2B. xeS®@ XES\AOOS * Oost Oz. T.H

emo ,meh yiivers & to eteianos tnemypoleveb heeoqgorq eff | ot tivbroo aism off .tedgted at teet sviteyinews bane betbhaed ent .test eviews To tetemetbh [snvetmt ns ditw emtl eqigq se ed eqiq feete hetovin to test betband nevefe et diagneL fsetot yirot bas rigid toet Soute yittt aAnst sotwe s déiw bebivotq “ot af winst suytve ent To nokton:t oAT sietemeib ak toot ~solo nebhua x of ob sorseeesq evizesoxs to enti egiaq ed eveki qorh woinp a sniweollot ,eLlosrw vetaw edd ot eetsy odd To agk. bas soiveeoiac misinism ot oale bie 1ewoq 707% bash edd m2

ebsm ere cbhnemeb mebiwe sew noltste eft mkt woltspisgey beoga

evit-yinews of asalt inst opie edt to got ofl 1etew vet wnst ex ywe erft mort sob evods Level vetew gis evods teet ai gest xte cose ,eeqiq Leote betevin eotdt ed LLiw exes

of yltoorth anibsel ,ctynel mt test bevhand wot bne retomat |

woLt ont mort beed oitstecthyi Lstot sat .eenord tewog 7

eno od ILtw ,eteviover Yo avetneo ot thoviesey eit to © | ‘Se

-teest ovit-yimewd baa

as

DESIGN OF DAM.

A topographical survey using the stadia method, was made of the valley in the immediate vicinity of Ingham Mills. The general location of the dam was determined by the topography of the valley, but it required considerable study to fix its exact site. A number of test pits were sunk to bed rock in the stream by means of cofferdam construction. Limestone of a fairly compact texture was encountered.

The location chosen combines the advantages of a fairly short dam with a comparatively high position of bed rock. The

Cross section is shown on Plate 3.

&.

The dam will be built of solid concrete masonry and founded

on bed rock. Its lemgth measured on the crest is five hundred and ten feet. It will be one hundred and twenty-three feet above the present river bed and its foundation will extend two feet lower, making a total height of one hundred and twenty=- five feet above bed rock with a batter of 1 in 12.5. Along the west bank of the stream at the site of the dam, there is a pocket about ten feet deep and five feet wide, caused by the erosive action of the stream at this point. In order to eliminate an unnecessary amount of rock excavation, this pocket will be filled with concrete.

At each end of the dam concrete core-walls, having a batter of 1 in 20 and placed two feet in rock extend into

the adjoining sides of the valley in such a manner as to form

bebrwot bos vincean etetonoo biion to ¢Lisnd of FLtw mab ed? oe : q

sew ,bodtem etbata ed gates yoviwe Leoldqetgoqot A” +8iLiM meripst to ytiatoty etsibemmi ent at ywilev edt to sbam . ;

r

ent yo beniorreteb saw aieb sdt to nottsoof peer ee voirte olderebtenco bexriupsr Jf sod »yellev ext to wiqergoqos | a of unve grow etiq gees to tedmun A setie tosxe att aft of eNoitouitenoo mehiettos to ensem wo mesite odt mi voor bed sbevetnyoons sew Stutxes tosqmoo yittst s to snoseomb.t

ylriet & to eensinevbs ent sentdmoo mesonto noltsool sAT ext .wot bod to aoltteor duis aitlsinnanee s atiw msb trode

Le otsl% oo mwore at nottoes eB Ors

Herbal svit ef seso19 offs so betresem fiteameLl edt stoor bed no hi eet cotds-ywoews bus berbaud eno od iftw d1 wwdost met ‘bas owt buetxe {Liw moltebmyot ett baa bed xewit tnecera eng evode eyinews bas berber ono Yo dufyted Ledod 2: guidam piewol feet pnolA .€,8f mi £ to 198tted 8 déiw too bed evede toot evi?

et sted? mb odd to otte edd +e meotte odd to wned teow ent | i ent yl heerso ,ebiw Jeet evit bas qeeb test met tuods toxoog # , of 19bid mI .totog ett te meette edd to noftes evte ove

visit ,moltsveoxs toot to tnvome vise geconny ne osentmtte

Leterohes diiw beLfit ed fftw texdoq k gaived ,ellew-etco eleatonco meb edt To bre ose tA 7 a ofnt Bbaetxs savor at Jeet owt boost Bae OS nif to iene | heh

¥

it g oe re

axot of as tornan 2 nove ot yellav ent to eobie anintoths

9.

a perfectly safe seal and thus prevent the water from escap=- ing around the ends of the structure.

A spillway for carrying off flood water will be con- structed on the east end of the dam. The length of this waste-way is two hundred and sixty feet and its crest is ten feet lower than that of the retaining section. It is twenty- four feet in height, having a vertical up-stream face and an ogee down-stream face. Concrete of a 1-<-4 mixture will be used in constructing both the dam and spillway.

An intake for supplying the conduit will be placed near the west end of the dam on the up-stream side. At this intake the water is controlled by a tweive foot circular sluice gate. This gate has a non-rising stem, which passes through an operating stand on top of the dam. The stand is geared so that it may be operated by hand. Screens inclined at an angle of approximately sixty degrees to the horizontal, are placed at the entrance of the intake to protect the intake pipe. Provision is made for repairing the sluice gate by means of emergency stop logs. Access can be had to the Sluice gate chamber by an iron ladder projectiong from the concrete wall and extending from the top to the pit of the Chamber. Drainage of the chamber is provided by a twelve inch drain pipe, extending under the intake pipe and through to

the down-stream side of the dam.

“qaore tort 1asew ei? ineveiq exvet boa [see etee yltoelisq « | OI TONITE ont te ebre ent boots gai : va ~noo ed IfLitw tetsw boolt tito gniyirad 10% yewl Lice ke: “g . eint to dépast eXT .meb ody to bane tage ocd no bosouite mes el SJeoio etl bane Soest yiente bos borbasd owt ef yr-etasw eyinewt at 31 .mottooe goinisie: edt to tart asds r9owol soet ne bas e021 meotte-qus Lsolsiev s aitved ,tdyted ai test s0t od {fiw eiusxim b-SeL 8 to sto1sneD .eost mesite-nwob eezo -wwiliqe bas mab ect citod amigouxtanco mi bean. rsen beogelq od [ftw fivbnoo end gmiviqque tot esetnt aA Stetai eldi JA .obie sesita-qn oct mo mah ort to bre teow at ofan eolula telso1to toot syfews sg wh beflLoisnoo ab istsw edt me dgyows esassq dotidw ,mete pateii-non s est ef ap eldT os Herees 21 baste edT mab ont to qot mo Srate gouitereqo me te benifont enesto2® .basd wi bsteieqo od vem tt tend ers ,isimosizod eft ot eoatneh yiale yletemtxorgge to elzite . etsinat ont tostoiq of edstni oft to somatine oft ts bsosly wi ates oolnis ont aniutege: 10% ebam ei noteivort .eqiq eit of bad ed aro geeooA s.epol qote y:rogteme to anson eft mort snoitostoiq yebhel mott ns yf tedmedo etag eotuis | edt to Jiq ost of god ond mort gaibnedae bas [isw ese1omoD dont eviews yd hebivord et isdmedo odd to eonentetl vredmede ot uguord? bee oqiq oxdetnt et t9bms goiboetxe geoqiq obetbh meh ont to obte mesute -ttwob mh

10.

The dam is designed purely as a gravity structure, and the usual standards of strength and stability are followed. The water was assumed to extend from the top of the dam to bed rock, but was not supposed to penetrate beneath and exert an upward pressure.

The profile as shown on Plate3 is divided into six sections by horizontal joints. The centers of gravity of courses 1 to 6 are found in the usual manner, the vertical section of each course being assumed to forma trapezoide

The retaining section was designedas fash ees-

Reservoir Empty: The line of pressure was determined in the following manner:- The center of gravity of sectioms 1 and < are joined by a line and the center of gravity of these two combined sections found, as shown on PlateS . A line is drawn vertically downward from the center of gravity of sections 1 and 2. Where this vertical line intersects the

line bb is one point in the line of pressure. In a similar manner the points where this line intersects the other joints are found. When the reservoir is empty, the only forces act- ing on the dam, are the weights of the different courses 1 to 6, each being applied at the center of gravity of the respective course.

Reservoir Full: The line of resultant pressure was determined as follows:- The pressure of the water acts at a point equal to

one third the height from the base of section 2. This distance

brs ,siustourte ytiverz 2 es wows, bengteeb eat sb sat ~bewollot ste veifidsete buna dtynette to abvebhad evel ont ot msh od to qot ext mott Brodxe ot bomvese cow restau out

&

| dyvexe bas dtesmed steistened oF beaogque ton sew tud loot bed | ive s8tq bre wages ts {

xie ott bebtvib et fetelT io owole es elt Youq edt ae

to ywWiverg to etsimes oAT .atniog, Istrostion wi anottoee

# ~ f{soltvev odd ,rennem Levers odd of pavot ee’ d 6+ TY neetbee ¥ shtoseqs1s s srrot of podariiak unted seryoo dose to motfooa -tawoll ot asbengiaoh ssw nottoea unintsde: edt i} nt bontoriojob eaw oivaeets to omtf eal : yam 1fovroesA ; S bras L auoitoos to yivets to 1winoe0 sdf =o neet gniwollot | owt seeds To yiivers to 19tHe0 SAF bre onlil so wo bontot ets at extf A . 2 stelT mo mwvore as ,bnvot anoltose bemtdinos to utvretyz to vetnoo eft mott biswnwob ‘yfleotirey oowartb \ odd atosetetat ontl fsotinev etdd orem 22 bae © anotioee aefimte 2 at .oiveaoiq to amil eft at tetog sao ak dd onkt ae gtntot vedto ont etooateatat sntiI etadt sisdw etatoq ot <Oiitah Be 65 atwor ot tno oft , vtque at tlovrtere: edt nodW ‘bavot a8 a yy of £[ astin0od Snereltib eft to etdgtew oft ers (sb ents no pat | % evitosqus: edt to yivers To sesERe ent ts fetioqs pated a

“yoru rt

HeniarieteS asw ersaesrg sSastivuesyt to entl ext 1 ftee “Love A ot faups tutoy s ts atoe retew ett to etnezetd oat =fewotte? 7. cnet etdT .S mottose to easd edt mort aged ont brit .

ll.

is laid off to scale on the line drawn vertically downward through the center of gravity of sections 1 and 2. From this point a perpendicular line equal in length to the water pressure , is drawn. A line equal in length to the weight of the masonry, is drawn perpendicular to the line of water pressure. Where the resultant of the line representing the water pressure and the weight of masonry respectively, in- tersects the joint bb is one point in the line of resultant pressure. Similarly, the points where this resultant inter sects the other joints are found.

The resultant of all joints is kept within the middle third, so that there are no tensile stresses.

The factors of safety are the following: As to Over- turning:- The moment of the forces, which resist over-turning when taken about the down-stream edge of the dam at any eleva- tion are more than twice as great as the moment of over-turning at the same point.

As to Sliding:- A coefficient of friction of .85 in the concrete masonry was assumed. Conservative engineering practice shows that this factor is considered amply safe in case of a concrete dam in which there will be no joints proper ly speaking, but on the contrary, considerable cohesive strength

om

seid ee

el adh ee = ¥

we

gS

SS ee a ny ee xs

biswawoh viteotiiev mwervh eat£L edt oo efeoe ot tte baat et atds mort .8 bos L emotiose to ytivars to tetmes ont dguordt tossw oft ot ftgmel at Lbype snil saelvuotbnaqisg 2 sat og

to tdatew eft oF dignel at feups satl A -~nwerh at , OTTeROTY | tetsw to ontif edt of tselvotbmeqieg nwatb ef 2 Cttoa sat ant

edd goitneeetqe1 sail edt to tnsti{veae1 sit e1entW .oiveeetg ©

~ai ,vyievitosqeer yinogsm to tdatew odd bas erses eg ‘tetaw

Sastives: To enif eft al tutog eno ai df tntot, ont atosates “etni tasticaet aistt aredw aiatog edd ,yluslimis .eisestq

.bavot ets atntot tento off etooe

efbbim odt atd¢iw dget at ataiet ffs to inedtiowey edt -

-eoneette ollanst on eta stent tadt of ,bridt |

“19v6 of eA tnoutwolfot edt ate yletee To etotost ont animet-t9v0 Sekfeey doldw ,ssotot edt to snemom saT -tantawes -svele wis jis med orld to sabe msette-nwob odt tuode moied none asitist-tove to tnemom sft as tsetyg as sotwe ascld etom ote mots ~tatog emea ont tea

edt ni @3. to mottoitt to tnetotYtecd A -?gqtbif@ ot eA guiisentans evitarrseno? bomyaes BAW TTI108 Bit etetonoo at etes ylams bersbtenoo et rotost sid? ¢edt awode solsogg 7 teqoig atmiot on af iftw eteds dotdw at meb ote ron0e se to 9880 - oviasdod sltstebtamon ,wstitos edf ao ted vgabdeoge Wo

12.

Spillway Section: The curve on the down-stream side was determined by plotting the parabolic curve, using the equation of the parabola X- = 2. PV (1) where 2 P by experiment was found to be equal to 1.98 H; the height of water flowing over the crest of the spillway being assumed as five feet, then “= 7°+5 «iM, = S742, substituting the above values in (1)

Therefore: x* = (1.98 x 5.71) ¥.

The line of resultant pressure of the spillway section, the profile of which is shown on Plate4 was determined in the same manner as that followed in the design of the retaining section.

In order to increase the height of the spillway section during low water, so as to dispose of a higher head than would be otherwise possible at a moment when such increase of head is most opportune , flash boards were designed so as to give way when the water reaches the desired elevation. These flash boards are held in place by "Wayne" irom pins fitted in pipe sleeves in the concrete. When a fiber stress of 69500 pounds

per square inch is reached, the pins fail.

. é oat

aew obie meeite-nwob edt mo syino saT tnoltoe® yewilig? edt sutay ,eviwo olfodsrsq ext gniitofq yd bentanesed slodsreq etfs to noltaupe

(f) YQ S =°X ent ;H 6@.f of Isupe sd oF Snirot gew snemiiegxe yd I & eredw | anied yewiitqea eft Ie gests eat 1970 ga twolt setsw To segled a edt tas pot Jest evil es beawees . "

‘Ot = Wy, (£) mi eeufav evods oft anisutitedwe

gy (at.é x 6@.5)= 4x ter otersa

-toltoos YewlLlige edt to evueesiq tnstlsaer to sat ost ent mi bentoricteh esw setslL mo awore al coldw to eLitorg ext gutnisie: sid to mgteeb edt mi bewolfot dadd es ts08nem omee ~moktoea moitose yewilige ee to dog test ent oesetont of *sbio at . | bisow nedt beer yeduid s to seoqetbh of es o8 .staew wol gals been to suss1ost dove nedw inemom s ta efdtes oq ‘eatwredtoed evin of es of benntesh stew ebrsod seslt , end ogqo $eom et fesLt sasiT .notisvels betteeb eft assioser tstsw ont node Yew eqig ni bestkh? entq mort "eaysw" vw eosigq mi bien ois diegod ebmyogqg OOC#S to seerte 1t98edit « asdW .6ferditos end at sovoela

-{ts? entq edd ,betoser @t dont evawpe Yeq” 7 s..| , 4

> a es

13.

CALCULATIONS.

RETAINING SECTION:- Area of section 1: alve+ 13.1) = 175.7 Sq. ft

Area of section 2: HYiai+ 18|=17/ 5g. f7. Weight of sections 1 and 2: [/757+ 17/| 150 = 520/23 |bs/eu-tt Water pressure at 25 foot depth: Le S2.SK(25". pogo /bs/5q. ft Resultant water pressure: 56000 lbs. per Square foot.

Area of section 3: a 18+ 34] = 650 54. Fj Weight of sections 1, 2 and 3: [i774 171+ 650 | /50 = 149513 lbs fur Water pressure at 50 foot depth: 62. 50". 83/25 /bs./5q. ft Resultant pressure: 170400 lbs. per square foot

Area of section 4: 28 [34 #52|=/075 sq. ft

Weight of sections 1, 2, 3 and 4: [296.754 1075] /50 = 3/076 /bs./ cu. 4 Water pressure at 75 foot depth: baad eh /7578O /bs. | 59. Ft Resultant pressure: 357600 lbs. per square toot - Area of section 5: 23 | 52+ 70| =/525 Sq t#

Weight of sections 1, 2, 3, 4 and 5: [Zo 7. 735+ 1525] 150 = §395/3 /bs Water pressure 100 foot depth: Seseio’ . 3/2500 lbs. /5q. ft Resultant pressure: 625500 lbs. per square Toot.

Area of section 6: B [zo# #8] = 1975 sqft. Weight of sections 1, 2, 3, 4, 5 and 6: 3596.75+ /975] /50= 835763

625% 125°

Water pressure 125 foot depth: ——s—— = 488280 Ibs [sq.ft Total resultant pressure: 966700 lbs. per Square foot.

| PMOTTAZUDLAD |

adhe ~:morrowe oem Be ach i “f nokdoea to seTk WRe Wr=Ri cer] 4) 18 mobfose Yo sera Poza EA\OSE = V2 [Asn AVRV\] 18 Sag £ emottose to tigteW wpe \ed\ oeze\=-— oo) 2G82 « “ty: idiqeb toot 6S se emeesrg 19d80 . | Aodt snupe ted sedl 00082 ‘terseeerg retew inediveott , Mp2 O88 = [we *@\) 8S 28 pottoss Yo snorA 4 Neal EVE DB) = 921 [orae wn vi] 28 Bme Sf emottove Yo tigtew | gz \ ea BS\ER = ~ OS hsSD idtgeb toot 08 ts. o1weeorq 19t8W 3 | Soot arou pe seq .adf OOBOVL ‘ie tseeetg tngtivees NN, pe trois |seeie 5 :) soltosee ‘to Bota wo STOAE = -oer [ero +er see] 12 Bae & 8 ef enoitooe to tigieW i pe Ra GENE) os i Ae se taitqgeb Soot év te erveesiq tetsW ; Soot SMe seq .adt ooaN'aé s ortuenetd tnsd Lueott at ie USeN= [av «$8 | 38 :@ noltose To se1A L ELRQER = O21 [ase VaRCATOS] 12 Bne B (oS fenoktoos to tiatew a pe \ 2d OGESVe = Rereees :dtqsb toot OOL ermaesta retsW i Noch srmuge ‘req .ed£ 00@88d tonseseta tnediveot pe STEN = [ee £01 aS. :8 moltose Io se1A BNRES -ot1 eve) aeh lA “8 18 Bas @ fs py is oe emotsooe to 9 igtow

: ‘h herr se sips

eS) } : es } sr a2 a: sh 4 / MBE \ CAV OBBBE = SS: idtqeb soot Sf eweeeig tessW | ¥

\

Aock qrooge tog .edL COTE teseeotg tmsdiveet LstoT

RETAINING SECTION (concluded) :-

Factor of safety against overturning:

Resisting Moment _ 835763 x 55.8 _ 22 Over turning Moment FB8L8OXx F/.7

Factor of safety against sliding: Assuming coefficient of friction of concrete on

rock as .&5

_R. 966700 | $35763x.85 _) 4 Pea o5g 7/2755 tbs 483260 ° ps $2 aoe -/0902 /b. pr-p, = 12753-10902 = 185/* min. SPILIWAY SECTION:- pit p= 12753410902 =23 055% me

Area of section 1: 9x/.43=/2.87 5g. WE Area of section 2: $[ 9x 10.08]- 60.48 sq. ft ' Area of section 3: 43[20.5+11.5|=240 Sq. ft.

Total weight of sections 1, 2 and 3: fie. 87+ 60.48 + 240] 150=47000 Ibs. [eu tt Total water pressure: = = 25600 /bs.| sq tt

Let h= height of section

d= depth of water on crest

from the bottom of section. 2424/0 Total resultant pressure: 52200 lbs. per Sq. ft Factor of safety against over-turning:

Resisting Moment “! 47000 x 13.2 Overturning Moment 25600x 2./7

? gainrut—19v0 obtogé ine “to eee b

@ RV x FALTER Aga can garieeh 8 Ss ee A RLU RS © Nason A IN % ri

ee tgntbife tentese yetas to todoet fo séetonoo to notsot4? to ine. 1o# Tt9 00 gittosee A Me %

; 66. es Loon oe a gorecoe AL —- . a\ £8551 - eer te EONBER. Op

aR.» | i » \se-——= spate WV S9EO\= 6 eee 2922 oh CBS Rs>

Mm M\SB\ =S0C0\-E21 81 = 74

PA MSESES= SOCOM ERTS Y= dad e :nortome aw Wipe VE.S\-EPAKE tL notsooe to eer |

* ay pe B34 O9 =ox ovxe |Z 7S noktoes Yo cork i pe OFS= [e. +6. ose nolsoes, ‘to souk a } \ ry bas & i. enoltoss to tagtow tetor | ; TT. \ ad) GOOTH = =o#8i{ons +84 .09 +12 si eae ii f xX saat 90303 = ES AE 3k rereeety aedaw fntot q # 3 ao to tigted =< ted a

apetr so tetew to digeb = b nies

reer et etuee Sta tetew to nolisotiggs Ro tatog node

pans: ‘Vie =8 * ae stoitooa to ios tod ad mort

ay fi

WN ge ‘t8q wdf OOSS@ teimererg Sa atsinien tabae igntonms 1sv0 santeyes \etse to Todor t

$.E\ x 900TH | Lcvaceial\ atvieer TVS xOOSeS AQSenadh QeinwwlasyO

a. 2

Dy. ee

( 15.

SPILLWAY SECTION (concluded) :-

Factor of safety against sliding: Assuming coefficient of friction of concrete on

285 wife: a TI CO'O Xx. So

25600 ah

[5 BIMORPH AK S) (2) pe a= Fe 72200 Vhs.

Pike ge A ie Bee 76a 7 2 Ses. (minimum)

poo Me MEE ae A cere’ Kank, 79 hy

Bb, + Po = BIGOrIs se & = os 6 /DS. (maxtmur)

16. PIPE-LINE

The water is delivered to the power house through a riveted steel pipe, twelve feet in diameter and eleven hundred feet long, and through two six foot pipes which act as penstocks for the turbines in the power house. The connection between the single large pipe and the two smaller ones is made by means of a surge tank forty feet in diameter and fifty-eight feet high, which is placed ona high spot about four hundred feet from the power house.

The intake of this twelve foot pipe is at elevation 640, the crest of the dam at 675, giving a head of thirty-five feet, and was designed to carry twelve hundred cubic feet of water per second.

Using the formula /- ee » where

h=loss of head f = coefficient 1 = length

d = diameter

v = velocity g = gravity and assuming a 12 foot pipe pelt | Comes /OSO 112.36 - ~G—- Sayan i fo. ees therefore h = 1.53 h VIR SCS S= = = (AS Slope, Z 1/050 pe Then from

8 davoidt savod towog odd ot boxevi ted at retsw oat uevelo bus 1etemelb ai toast ovfowd ouhg foots betevts

tox doidw seqiq toot xte owt dyyordt bre eRros: ost satand oft sano tewoq edt af senidtust eft tot atooteneg es f teffeme ows sft bas eqgiq egrefl sfLante orft noowted nottoonmnoa

ai teet yrot dast opgiwe s To ansem yi obam ul gemo ; 2 no boosiq ef doidw eiginh Soot iiyte-yttit bas tefemeth se eantort towog edt mo1t test berbasd iwot tyoda soga daid © , 0S nottavefo ts st eqtg soot evfowt elds to otetak oat | toet ovit-yirids to bsed s aatvin ,cvd se meb ont ‘to teex9 ent | ~elew to teet olduo betbaud aviewt yrts9 of homgiaeb ase tnd . “',bmooe8 eq atenw , ae = eLumct o% adt gated beed to eeol = of tnelolttsoo = t ftanel-L£ 3 : tetemeib= b | s 3 _ uttoolev= v he on | wivers = 3

hots eee eqtq toot Sf @ palentne 2a | ; : f

; 2 4 PE oN. oy ee mh E\\ PS 2235 253% \O , =

8a.L = d-etoteredid

Ez Ye Oe "S, = eecer—edeatatesinen, “Se sa & ee ity | vee> OBO \ § adi

2Woe¥ AY

Le \ where ¢ = constant r=hydraulic mean radius: for full pipe r=d, since

pipe must be designed for maximum.

Substituting values v=190\/ 3 x .00145 12.35=feet per second.

This velocity is not too large because maximum amount of water will not be used and consequently the velocity will not reach this figure.

There fore use 12 foot pipe Thickne ss of pipe: Allowable tensile strength of pipe =16000 lbs. per square inch Head =35 feet Head (in feet) x .434=l1bs. per square inch Then Wx¢-t x 16000;

35 x .434 x 6 x 12=t x 16000 x 12

2 Ln Qot = ae Allowing for water hammer, which occurs and also for stiffness of pipe use #@ inches. Therefore Pipe Dimensions are as follows:=-

Diameter:=- 12 feet

Thickmess:- % inches

Length of Plate:- 6 feet

taatanoo = otedin ; ry eonte ‘B= =1. eqiq [fut 10t :ewtbser xsom otiuerd yi = ea ta | mse k xsi 10T bengtaeb an oe, eqig us « = —seutey gattutitedue. | et @bioo, xe yoerev -bnoose req teet=86.SL. 4. yo %o tavoms sumixem eeusoed egis£ oot ton at wittoofer ekat © gon iLiw yttoofey edt egos pnenge bra boas ed ton Tide wet ew | “sOTQet e hdd fosot . Se ol | seg tg : to sci al ent siszupe t9q .edf£ 0000L = eqiq to dtgneste elltenst eldswolla Soot GS bsolf dont etsype teq sedi =So3, x (%eot at) beok | ; O008L x $8 x W nent | Sf x 0000f x $=SLI xO x BEB, x GE “ABO ad 6,

-eqtg toot SL seu etot erexnT

arenttise cae oels bas esrw990 do telw ,remusgd 1r9tsw TOT satwolla. . <cortont § ag eqig to ; ~i‘ewollot ss ers snotenemtd agit stotsredT q toot SL Sarid neni | | eosont -‘szomlofdT . b teet 3 -tetslI to dtyped

16,

RIVETS :- Rivets should be/4x thickness of thickest plate+ %o: then 4+ %- Lo + £- af Therefore use% " rivets. The spacing should be not less thanj% x diametery 3, x %- Ax % - 2.1%" ws eonZdt. The girth seams are lap jointed, single riveted and the longitudinal seams lap jointed, double riveted. Considering six foot section, the pressure is found to be 1094 x 6 x 12 = 78720 /bs. Allowing 12000 lbs. for double shear, then LET ES 7s therefore & rivets per foot will be used.

The diameters of adjacent 6 foot lengths vary by twice the thickness of the plate, forming inside and outside sections alternately, and angle irons 5'x 3’ are placed at every other joint, thus strengthening the pipe between supports. The supports being concrete piers every 12 feet except through one section where they are placed every 10 feet. At this section the pipe is suspended 15 feet and the concrete piers are 20 feet high, reaching to the center line of the pipe. They are

2 feet thick and 16 feet wide.

ee

~ etIvit medt :o\ +etefg teetotdd to aacntotds x Niod Sisorle agavis

' auth ) Ss = Se .atovia ' Seay erotetsaT ‘ge ee Bet Oe

ptetemeth x sjnedt evel ton ed biuote gntosge eit

Ne es ah “He - & - Ss £ ont bas besovit eigniea ,botatoft cae ore ‘RGLBOE dirvig oT sntvebienad sbodovtt sidvob ybotatot gal emsse Fatitbys tgmol ed of baoyot ef sryeaetg end eMoisove lew he

€0\ O8TSf = SL x 6 x bROL

-boan of Lftw toot 19q atovke 8 e1otetedt gotwt wo yisv adtvanel toot 3 tmecaetbhs to aretomsts edt anoiioes shbissiuo bas sblemt gatorrot ,etsfgq edt to esomioids ont

toddo yisve ts beosfq ots S x"3 emott ofyus ban ,votamedis

edT .etrogque seewted egtq edt aninedtgneite audit ,tmtot |

eno dayords tysoxe teot S&L yrevs arsiaq etetomoo yated advorgua moitooe elds JA .toot OL yrove beoslq ate yout oxerw mottoea

OS ers sretq gte1sm09 edt bas teet af bebnoqeva et eqtq ost

ere wT .ogiq edt to ontL retneo edt ot gatdoser ,tigth toot | eobtw test Of bas dotds toot S

=ey «pedt ,tsede eldyob 10ot .adL OOGS £ aniwolLlA ;

IQ.

The alignment of the pipe in a vertical plane consists of one long tangent about 1100 feet in length, running from the dam to the surge tank at the con stant elevation of 640, and under a head of 35 feet. The drop in about 400 feet from the tank to the power house, is 90 feet from center line of pipe to center line of turbines, making a total head of 125 feet at the turbine.

Horizontally, there is a tangent 500 feet long running from the dam, then at an angle of about 62° another tangent 800 feet long to center line of tank. An expansion joint is provided fifteen feet from the end of first section; the end of the curve on first section being covered sufficiently deep to do away with expansion and contraction. The upper end of the first section has a fixed connection with the dam, and the lower end of the second section is rigidly connected to the tank.

At the expansion joint the shell of the adjacent pipe sections are increased from % inches to% inches; one pipe enters the other for not more than 30 inches, the rivets in the engaged section being counter-sunk. Between the inner pipe, and a sleeve 12 x % inches, which project beyond the outer pipe, a packing such as hemp will be used, and secured by small plates riveted or bolted to the flange of the sleeve. Similar joints are provided for by elbows in the smaller pipes

leading from the tank to the power house.

etetenoo onsla Leotirev 6 at ext ant to tnemmatis ost ; mort guinnurct .dtgnet mt toot OOLL trods taogast pool ono to bas ,Ob0 To motisvels tnstemoo edt ts net ogee ont ot ma est sat mort toot OO gyods ai aonb edt .teet 8 to bees 8 19 bru eqiq to enif tetaso mort toot 0@ et oevorl towog ont ot inst teat ESL to bsed [stot « anitem peontdust to ail retneso of .ocitdusrt ont ts i Mott gainav: anol toet 008 tnangnss s et ener. : Vites most of ‘a ) $oet 008 snegnset todtons °Sd tsrods to olgns as ts i emeb edt © bebivoig et sntot motensqxe nA .Anet to omtL tegneo ot guos : eit to bae sdt imokiose te1it to bas oats most Beet nosdttt ; ob.of gseb yinetettTive bersroo uated aobieve terit mo erie f edt to bue ‘treqyquy enfT .moisosrtnos bas notensqxe Attw yews eat bas ,msb edt dAtiw not séonies bextt . est moitoos texit eft ot botoonnoo ylbigit et nottoce Saosea oft to bas rewol napa 4 eqiq tmeostbs ait to ffLede edt tatot nokeaegxe ont tA

eqiq smo ;eecsont Sot aedont mort hearsront ets A J

nt atevia endft ,sedont 0f asd? stom som tot ‘t9az 0 ont ereta ne 1omnt edt neowtet .Anve-redtayoo antted noistoos beaayae on ud

ert bnoyed tostoigq doidw ,redont gi x SL oveete s bus ott

yd betyoon bas ,beay od (Ltw qued es dows gaidosq we ,sqigq x90u0 sovoote eft To ogaslt ont of betfLod xo betsvit astaelq f£ama eegqiq teflema ent ot ewodle wi t0t minted 0%, ate siniot “shat

-oeyod tswox ont of det odd mott 1b

aa,

SURGE TANK:

The surge tank is used to take up water hammer occurring when the turbines are shut off, and saving the pipe, which might be bursted. The surge tank will be built 15 feet above crest of the dam, making the elevation of top of tank 690.

The tank was designed in three sections as follows:

Let w=weight of cubic foot of water = 62,5 h=height of section to be designed d= diameter A= area of steel f= unit stress allowable =!coo0o Therefore, for the first section (twenty-three feet) 62.5 x 58 x 20=A, x 16000 A= 4.5 square inches A.7 358 = Ye inches Allowing for water hammer, make plate 'yinch thick. Second section (twenty feet) 62.5 x 35 x 20- A, x 16000

i rae he i" at EN hails (ad us eo =e

Allow % inches for water hammer, plate will be es inches thick. Third section (fifteen feet) 62.5 x 15 x 20=A, x 16000 AST Sais 4 Oa POO ee For stiffness and safety, the thiclmess of this section will be made ¥% of an inch.

-

. AMAT Aaaue pitiiiveso iommsd totew qu salst of bouw af anet opie ont. so Lote ata ad¢ anivsa bes etto site ote zonkdivt ont oct evods toot Gf sLilud ed {fiw uanst ogise oat .beterud od tego 084 anst to got to mottsvele odd yorisisam ,meh odd to teeto . cewollot as enottooe se1dd oi bangtach sew anst edt . * 6.55 = tetew to toot oldwo to tigtow-w ted | benateesb ed ot nottose to tdatsd =d tetemetbh =h festa to sata =A : oooat+aldewoll(s seerte Jtiow =2 (to9t saris-ytnews) sottooe tertt edt tot stoteto at OOO0SL x ,A= OS x BC x @.83 aoilont ersupe 3.8 =A ‘genont aie = Bae 8 eH0idt dong o¢slg etem ytommsd 1edsw tot gatwolLa (tost ytnewt) mottoea baooee ooost x ACS x cS x €.88 aN 0 O25) 2 ay". en pe EF. ~A re de aodon t aN od {ftw etalq ,temmed tetaw 10T vedonk 3 wolilA etoins (soot neettit) motiooa bitdT oooar x -A -O8 x GL x 6.88

Salih i

Vitel . SO.» Trey = PS a mu pe ThA =A . i é

nottoea aidt to esemlotds edt ,yteolsa bas agentittea 10% . | \ ont ms to obam ad ££iy 4

\ puta tne

Rivets for tank:

7 a : ; a - use *% rivets. 5 x4-% , At He 1G nae?

The spacing should be not iy: than al hat yy ae Dinche's. Capprox) The stress at the bottom must be equal for every seam, then 62.5 x 55 x 20= 68750 lbs. The allowable stress on each rivet is 7500 lbs. per square inch. Then 24/22. -9, therefore 10 rivets are required. The girth seams are riveted two inches

to make a water-tight connection.

as

| 7 Tsv eae aaa oe BB eB tak o 2ISVIN WN sey, €4 . A Aa i

(xorngqe) .excdo os ‘sou! ie + ‘ul Sak whe

{keg YIsve Tot Leupe od teum motfod edt ts rn: fose mo anette oLiswolle edt sadl oztga = 08 &: aa “0,80 modi er oitoredt ie- S'"2 yes? ,domt orsupe 14g -adL 0087 ek .

oo.

*

eenont ows batevt: ors emsee ae edT Dorkper ote a

22.

POWER-HOU SE.

The power-house will be placed on the present site of an old grist mill, located on the north bank of the stream ata distance of about fifteen hundred and fifty feet from the site of the dam. The power-house will be built of concrete both substructure and superstructure. Its outside dimensions are 103 feet 4 inches x 49 feet 4 inches. The roof trusses are of steel and supported on concrete pilasters. The covering con- sists of corrugated red tile roofing. A traveling crane of twenty tons capacity, operated by hand power, traverses the building, the track girders being carried by the concrete pilasters. This building contains all the hydraulic units and electrical appurtenances, offices, and machine shop. The turbine units, transformers and machine shop are placed on the first ficor. The switch-board gallery is placed along the south end of the building, and the top floor is reserved for bus bars and switch cells.

The available horse-power (7200) will be developed by three horizontal shaft S. Morgan Smith turbines each fifty- four inches in diameter, with a capacity of 2400 h.p. at 360 F.p.m. Each unit carries its own exciter unit mounted on same shaft. The turbines are each direct connected to three Phase alternating currect generators, having an out-put of 1800 k.w. at 360 r.pem.

The transformers are situated on the main floor along

the east side of the powerhouse. They receive the current

as to ests tne eetg eat mo beoata ad fitw oeuost-1e¥or ont ot

& ts mesitse od To dned did on (eat tro beseooL ieee folng OE

este edt mort toot yWttt bas bexbaus neesttt tuods to. sonstete ‘gtod eseromos to thine ed ittw eesor eto" oxtt “meh onft 20 aus suotansmth ebteéwo asi sordowrsenoque bas ouutoin sade

Yo sts eecestd loot eAT “yeodonk & ‘test ob x gedom b soe’ 201 i ees

=tf00 salle eT -oretentiq aderonoo f0 ness ee bas to ensx0 naifevers A sanitoor efit bet bodezirrx00 0 eget eit eoerovet ,tewog bred. wd betanago ttosgzo anc Gaeee. ete19n09 eft wi belytso ated arsbits toss sat santhtts } atins offue by! edd ££ antstnoo gathiind etait evegenghs ee ent .aofe snisosm bas ,eeoltto ,csonsnetivggs LsotitoelLe bars ; ent mo boostq evs qotle entdosm bas evemrotensit ,etion ontdans ent gnols bessi{q at yrefisg busod~iiotiwe ent .toolt text? tot bevisee: af toolt qot ant bas ,gnibitud edt Yo bate Asso ) -eifeo dotiwe bane eted aud vw heqoleveb ed ILtw (008%) tewog-eerod seidseltevs oT ics | eytit cose cenidiyt dtim® aspyoM .2 disde istmoats of come 8S Ss .g-d COOLS Io YXtosqso #2 ditw ,r1etemskb at seciont 03 ri mo betnuom ving wtioxs.awo ett eetviso tiny dosd Sader eer? bedosnmoo tosrth dese ems senidyyd eff Stee ems a

to tuq~tuo ns gaived ,erotsieneg soe1r1ws solsemesls eaRr oMeT ot Ove $8 Wet ( } grole rtoolt mtsm ent no betentie-eis er9ecy otanstt oat 4

tnenyuo oft ovieoet yedT .sanot-vewod edd to

23.

from the generators, and step up the voltage to 33000 at which pressure the currect will pass into the transmission lines.

For the present, two units of twenty-four hundred h.p. each are to be installed and provision in size of pen-stocks, powerhouse etc. left for a third unit of twenty-four hundred h.p. to be installed latter when increased market

demand shall justify same.

dont eteype teq abnyoqg O006~---<------=- sone nobeaqinod " " " " Chi wisice aa on 60 mm 0 ee ne oe ne ee ee zeed® m” ¥ "> 8) GO08L -+ << «+ 6 <- = ~-- sotanss mt Leet

ebS

" " " "

4 by omit S1supe eq ebmsog O008L <= feete mt sestte odtt We me

tesw dmomom psatbaed tot ‘boa sLumt o% et {W i=M a

masd mo beol Lstot cw ect

toot at digdel + f°”

-tooTt ergeype teq ebnsog 08 -- beol Seed

3 9 . . O&L -= Deol evid

LW OM , tremom gtibaod ©

asw uotbsol yatwolLot edd ,roolt btrtdt anisdio¢que #5 2 eo “boas

etoot etsyupa req ebmvrog 0S == bsol bsod

. e ° " 06L == beol avid |

beau acw “osotom09 boorotnton”" a" 9 tornebiell to LLLVE ° . -toomaorotaiet to tavoms bas anayfoo to este exit patatorste

gogeei1te oliswolis ot anobtaluolso evods ont {La fT

‘es netst orew see! ty 3 }

foot offs 80" y OGLe--+---—-—— gtero10. To ddgieW ‘i

)

= x ———

| HERKIMER;

es fe fs !

i) GLOVERSVIMLE P |i

-—>- \

/ 1 t 1 1 of

\ Lf 2, 1 (f? 4 f 2 = eI / / 7 Rea og Ae te

\

COBLESKILL

\

\

) RicH MonoviLLe if ALBAN {

i; ALBANY <\\ ff SCHOHARIE / a / \ nS aL wool | S> bs eae \ / a | ko ee ia! \ / el i - I / | pik Nee eee 8 | ae SS {— ; SS 4 i Sea rf =)

PROPOSED LA ST CREEK DEVELOPMENT /NGHAM MULLS

IMMEDIATE VICINITY.

GW ck. Hf Aeveuy E didgetter monn THE S15 D

Draimage Area of Last Canada CreeKx Shaded

150

Ny ©

SITE OF PROPOSED PROJECT

FROPOSED EAST CREEK DEVELOPMENT |

THE TIS

¢

x S = = E

eS S S S S

: “a . Z - : < rg - =“ = « 7 SY & rani : . 2 oo

a

?

“AW en oF

eer: tt:

rc < sere - +3 - 4

vrs +

tos t - ar re Pew rs oe ee eames woos: cases ~+ "wri Les yet coed t

a ceuula

ot nea ane aE

et ph aem v-4 er 0 = 5 fy urs Soe.

Jan Feb Mch Apr May Jone July Aug Sept Oct Nov Dee

= bk = aS, ifia bay S12 Bae he ae

Feat titers. $3 rv >a 4 vy 5S et 8 sa era: gees) caus eer + mer pe Sab beuel banee hopes Pett : bhrgs digs Bald Gabe tie 1

Sooo one Had iaal Teg | on i gues :

; ; ;

ei $

44IdIAS -INODIS

MONTH

a ae

SECOND - FEET

oe Be Mc Apr Mey June July Aug Sept Oct Wav Dec MONTH

SECOND - FEET

428}

rey setae ane!

Shea aris Megat asp aee y WBlak Pe INV6aa Bee

ae

ta PS cutee 2 COPE PERS Ba Jan Feb Have May June July Avg Sept Oct Nov Dec | MONTH | eee 3

SECOND.-— FEET

APMOUR INSTITUTE OF TECHNOLOGY

i

~ oa i

Ze 2 Cl

124 ka

+ i

2000 /800 1600

1400

~ iat) Ss °

400

200

a FF 7, tee '

May June July Au MONTH

fe) i H Jan Feb MchApr

ts With an aah?

whe CML) = aha bohnhe

Ais RE a a Boe , aF TECHN OLAGY ) Yea j “Tr ntathe mg eee pike) | * ood Shee Seka 4 Bon | ' } +

sages seas oe esc et fe E ace ee ee S HEE S. eae, age _INGHA, ae ae ert ae Sagee a) | ae eeD Ls

pea pee Hatieet Passe

oO,

See ace

:

13531

a

Se ea a

net Fs 2 ¢ > + Pete a a a = + 7 rete 5) Bs ay 3 B22 4 2 ig baie go SE teh athe Pu ees by é Rigtite~ % chat pk nd Ses os esr * A tet at Mead wa aoe o $ 3 LES Setar pend Brice tea eee 3 sei Pecyt oY Sissy bay sath be Hi S855. soses RR o bess 3Eas> 15%: E> - Fy ; bers Pn = i = See we y a : - \ Ws, P < tz ee ay A oe ij" = Bid |

HGAE : eoaneces 43 Bea eal eat ss

Bese

—_

FESS HGH ERG fF He th

2 ied ath Tabs £& 3. 33> ° ri Sy fn Sek Sen Ne aes beet rd Een Red cojebes hae Rape Ee 3

ce

a .

ma

Se C8

ae

alae t RG BR BO sr

Soe oee eae eo

Fromale ices Lok BOS BEL. 2? oat SUE. WEN Wane

Jan Feb Meh rem pens Tune July Aug Sept Oct Nov Dec.

<

MONTH eS ERR to

SECOND - FEET

ARMOUR INSTITUTE OF TECHNOLOGY

rs +

37 ober: paeay sani feey Ue aria Ie

ae 4 - ~~ i UR As ea eS eau! ites ls aaa mle? boast i $1 Ret Bedi HE Ee eb ifs 12 beat = $533) fie art rr ¢ sueey nyees fete a ie Me t

1.7 Et ee Jape s90ng score bees

ea einige

hee rs

as Pea

spr4

pas

Aen ray

;

- Pes CEERI ETT FIERY o

ery!

Bedteuudieer deste te fq

Spopel foe | A Mch Apr May June July Avg Sept Oct Nov MONTH

ra tas ane Jan Feb

i : Dec

SEC OND:~. FEET.

ARMOUR INSTT

2 : atts a ¢ : Eid i $3; Fa ee non Wena paees rowers Panay ewan: ecurs Bry os Te ies eths3 ea} Reead ests B sea SESS ties tHiaitt ; : sri ad i 3 eget PGs St SG GS Ret ipetes cotng Seve poe op eauns conigy tapes sith : teed tay 5 4 tint Hh thre ote =i ae Hig rea hts: Bay heat ieee Gs vere poe ‘fed 555 Eo Ss beats tans he} ouyss warve bpm wae win Ub pe Php Totieds i fhged ose ya peed ceeds Saigeee ead fads Ja tl as aoe iil a Rd A = ones 4u o ca fr Sises re Fo eee baba ties ae tht i ay ofp eit te

tet at 3. oe f im

aa peg &

AF; 3

aw See | oo ee ee ° Jan Feb Mch Apr May June atv Aug Sept Oct Nev Deo

MONTH

oe

eae

SECOND —- FEET

a : Tv? ~-% a. + SerLbeEts 1ay ; Fe Sg Soaty b fe z +

ay Sia age este eae ae Bes SEER ee beh bicl cid Soe ee Le ae apeeebee ee oe 1600. Se a

aes baat pena sees

ee

: is HA Ebest Et aougee ae Brecespse ss ecso ua tb SEE a an se

ier Feb Mch » Apr me Tae July Avg Sept Oct Nov Dec.

MONTH

pre mek

ey a pe pe eas? 3 rr ay en SE pdt ete t t. ing SRR + ¥ —+— es | gece a oe

Jan Feb MchApr May June Joly Aug Sept Oct Nov Dec

8 & { re | ae et.

nae ets oe See bercs toied 220

LIFTS -ONOIDIC

MONTH

SECOND - FEET

f TECHNOLOGY. , ; pos ht ie. 3 Div

reer

et i

< 2

SGneG ee b(n ttint el nt tet tt ale

ec ea

a tees DPE

3

Jan Feb Moh Apr May June July es Soare Oct nev Dec. MONTH .

Ee teal een fp nad ae eae ti

ARMOUR INST TUTE OF TECHNOLOGY

@Ro asi. Gan

LIN VGHAM A/a A Md dy a fap Set AGH 1: Bee

at

Wena 69S

J i

+t |

=f }

SECONO FEET

ge Feb Mech pay iat PAG, June July ae er Oct Nov Dec , MONTH _

FEBRUARY

JANUARY -

|

i

28 2 7 rear OS ee

a miey AUGUST

ra 29 es

12 OCTOBER He NOVEMBER

q a va) q 5 e ~) e} oO fin 10000 Ibs \ 9 /2-0"— Bilt Nee NLS ef ee Ee Ee ee EL. 675 4 NG 1 ta Yo 1 0) Se | 5) an &, e lin=l00sqft a” 1 ul 5 ! a Ro NS 4 1 LXo_19830 SS A % a) lin='20000\Ibes Nee ONG = Nl Norge! (=. os ee I eS ee eee ee eee ee ha 3 eT ae. 1 5. lin.= 200 sq.ft ot ! | 33125 | L L | i) i ey lin. = 40000 Ibs. 5 A i) 5 ZA Gy) z ! i 0 a 6 t 175780 U 34 Be. elo 3 oa i ocaeemneees | ec, a lin = 40054, FF | © by Si 1 s | N lin. = 50000 Ibs. i i H vo 1 * { iN Q 1 5 312500 | H i 7 ' lin. = 70000 \bs. ies a See EO: | 1 { 1 H Ne 48280 \ ' 1 { i { H 1 1 i { | 1 O'S 2 Fas Boe See ae = a ee nea S575_| 1 | { ' H { { { ' H { { { ' 1 i ' Hl EL, 550}

Weight of Concrete Taken as 1/50 /bs per Cu Ft 559%

factor of Safety against Overturning = 2.2 ra Factor of Safely against Sliding = /.4

Area of Séction=5572 5g. Ft

Scale-/ inch = /0 Fr

\\) \\\\\ \\ A Oss

PROPOSED EAST CREEK DEVELOPMENT

GRAPHIC ANALYSIS OF DAM. STABILITY 2~2 STRESSLS.

GUBuck, Af AL vey PAD Litem acer

THE 5/5

fin.= 10000 Ibs.

ae 9

\

Factor of Safety Against Overturring= 2.6

Factor of Savery Against ; Sliding = 15

STABILITY ane STREFSLI

: S . a Q : Ni \ - : 3 S S <

GRAPHIC ANALYS/S OF SPILLWAY

Sca/e-/ inch = 2/7

Bak iy floors

It

G

€90 eS ns es = SFEL—677-50 a See FL. Crest of Dam 675 I = atts : = } CORE WALL os oe ny 1 =e tH = aaa re Tiss N = 650 a —— BN eee a od SS a {ORS TRA FEET £. 640 S | See atta aa | er Orv: (STOCK /NTAKE _®R pele | 600 } | | 550 . i ; = | 500 |_ L L 4 -100 oO 100 200 300 400

DOV DUA © aE ATOM NOT DAM AND SFL LIVVA F Seale —/ (167. = 20h 77

690 | = Peres Of Paraper 677.50 ae [ B.S Sa ae tee ——=——————SSSSSSS ZL Crest of Dam 675 HW. EL. 670 _ LENGTH OF |SP/ILLWAY 260 fA FLASHBOARDS f ——— LL Crest of Spilivay 665 =========5==== + —— SSS SS PS See 650 eae EZ einen Semi EfSF =| a hier i -| Lo MF i Ae, foe a ae a ol “| a bf | a i 5 = 2 at Zz F | : : 600 d------ J A af eet ME 2 | f=] Ske Ei - | aN (=! A eH ] at i r KE tp. = “~< = 4% = aa} t 550 ‘i ! + 4 ie i | | He 200 300 400 500 600 ao

AM ELEVATION OF DAM I6Q/E—/ 16h = ZO FF

AND

SPILL WAY

FROPOSED LAST CREEK DE VELOPMEN., uae INGHAM MILLS, NEW YORK

9M duck; Afanaay ; Sffettiomarcr| THESIS ©)

cErmann, ©

GLEE

VN HED D)

Co om FAS LNIA

AT /NGHAM MILLS, NEW YORK

S W < S X S S & S 5 : S S S S &

CROSS-SECTION THRU’ COREWALL

EL. 67750

S907 SOLS

CROSS-SECTION THRU /NTAKE

FLASH BOAKOS ARRANGEMENT Scale:/inch =/ Foot

--------------------------}

g s N N Be = + : ac aS Sars ss $9 Sa Sac: Ss = 8 a 8 < a Gee a : as S 0) 8 0 N G ji

a

7 |

WLLL

iT [Sree 1% O1—,2/

: < S S S : S GS 5 S S PS S x \ x

| Oto ty ao aw rE a5 ji cot?) 3

Scale - /2 inch =/ Fi

GATE

OPERATING STAND

AND

ILS CGE

£

@

ee

Aer

it,

SLCTION THROUGH & OF 72°NOZZLE.

/2'0" OPENING TO BE MLENFORCED BY 4 -v2" PLATES TWO ON THE INSIDE ~~ TWO ONTHE OUT SIDE AS SHOWN.

6XGN SOTTort OF TANK 35.

SECTION THROUGH OF 12°O"PENSTOCN CaVNECTION

Lr

NOZZLES 721g Ye STEEL PLATE.

SX N

450

5640"

40-0" SIDE DIA. —+—

JPON LADDER RIVETED TO SIDE OF TANK 1C ONE IN SIDE 4 ONE OUT 3IDE ror ENTINE ' HEIGHT OF TANK IS INWIDTH

OLE WITH COVER.

FLG90;

FIVETS yb EIRTH JENMS SINGLE RIVETED LHPJONT VERTICNL. SENS TRIPLE RIVETED BUTT JOINT WITH TWO COVER PLATES,

EAST CHNADA CfrEEK DEVELOPMENT

DETAIL OF 40 Ol SURGE TANK FOR /2' Dt PENSTOCK.

INGHAM Ils My. GWBUCH. WADEVEWVEY . G.OLETTERMANN THESIS:

i TH TH = Tf i) Wi] i H in Y

1 U fi [al LS DOUBLE RIVETED : ( | Vw ¥y" rivets spaced |\e"cfoc Ki ee as Shown. iif 0 | ==-=- --------

Fee Sy

3 iS

2 Hy ro) 1 |

i iI | 2 1 | 8 | & | Le oa ) 1] Pp

ee Li I p_t

bL— : - JOS tO SURGE TANK. a 7 = ; -

ALLGIRTH SEAMS TOBELAPIJOINT SINGLE MIVETED FIND LONG/TULINAL SEAMS LAP JOINT DOUBLE MIVETED UNLESS SHOWN OTHER WISE.

st d co’ G-o +o"

i i) DE TAIL OF EXPANSION JOINT ———— oc 1

am 4-0 = = 7 397-KPLATES APPROX 12 LONG DRLLED

PORTBOLTS EACH 1

34" BOLTS+HEX NUTS

t SUSSSXSSSN_ SASHES SANS Meuse Vee ee iX\| (LZ VLLLELLLLLLLL LD LETTE TD TL SSSA Te’ PLATE LONGITUDINAL SEAM DOUBLE = ~~ |RiveTED BUTT JOINT WITH OU TSIDECOVER PLATE!

WITH COUNTER RIVETS ON INSIDE

PLATE LONGITUDINAL SEAM DOUBLE RIVETED BUTT JOINT WITH INSIDE COVER PLATE + COUNTER SUNK

RIVETS ON OUT SIDE.

12'-0 SXSXYB" (= TOBE RIVETED AROUND 1: ay « PENSTOCH EYERY /2-0'EXCEPT 45 SHOW ; OTHEFP WISE. [ od EAST CANADA CREEK DEVELOPMENT DETAIL OF 12-OD/IH PEN STOCK. : INGHAM MILLS N-Y. ee GWBUGH. Wu.DEVENEY G.D LETTERMANN. THESIS.

feo"

feeercentn| GI 650"

Expansion jot ~_

pS tt BS TT

mal] Pipe El 636.78: yO) x expansion joint. SYR! . y ( - EI S \) » 20

FPROFILE OF FIPE LINE

isso

Base of dem,

tot turbine, ease es . 160°0" l20'0" 40"0" ) ‘= ; ow oi : a ; | = n » : } * e rh y 103" 4" cat ae Rae th kero” o. (* POWER HOUSE

oO

150:

300° OF 12°0'PIPE

800! OF /2'PIPE.

: my ia XY RII AT 230 OF 6 PIPES. y, PLAN OF PIPE LINE.

1) Y

4 Goo" Ve

7

\C eee EAST CANADA CREEK DEVELOFIIENT. ou

N FIPE LAYOUT G75"

FLAN owl PROFILE.

INGHAM MILLS NY a

GWBUCK WuJDEVENEY. CO.LETTERMANN THESIS. arn

Se RAAF SSSA RSSFS:

NB THE LOCATION OF WINDOWS ON THE TWO S/DES & FRONTS ARE THE GAME.

ALORS

GENERATOR. (800K W

eeaeen | aaa, * 250"

+ 1035~ F-

CUHN FLOOR PLAN.

PLATF ORT. IRON ROLLING

—<——— af i

STAIRWAY, oe

OFFICE | SWITCH BOARD GALLERY. / © = 17-0 = a 29-07 - i BASEMENT FLOOR PLAN. secon recor penn \POPOSEDEAST GREEK DEVELOPMENT /NGHAM MILLS, NEW YORK. THE SSS. =

Oooo GOO) Coon Bini Doon

FIXED TIKEO FIXED FRED FIXED

SEE DRAWING SHOWING DIPIENSIONS & FEINFORCE/7TE NT.

OFFICE.

=

SECTION AA, CUACHINE

SHOP

FROPOSED LAST CREEK DEVELOPMENT

INGHAM MILLS. NEW YORK GU Bick. Hf desnsy Gd Lette rm al

THE 5/5

r 73-10"

Le 98° F003 17'6 LONG BENT N\ SL) roostone 1B woo: 7'10%Ve,

rel ME Ron To" LONG & 18 RODS - 33+0° LONG - BENT.

Soir

<1 8 pon 7L0Ne. F0DS O” LONG BENT

J =

a=

7

uN --—=-*

¥

\

croc

———— yr

276° ROpS 15"G'LONG BENT “7 Ye "Rop 16" LoNs.

We Roo 1! Lone >

eee.

BUS BAR

COMPRARTSIENTS.

10 = SW/TCH BOARD CALLERY.

¥ & 2 > = Es

=

f

i —— > - see 2e

eas

fal

le

jp Wish -—— = 3)

TRAN JFORTIER COMPHATIIENTS.

fF

FROPOSLD EA ST CREEK DEVELOPMENT

AT

SECTION BB. INGHAM MILLS, MEW YORK

S FEESIS:

{ a

! |

BUS BAR & SWITCH CELL COMIFARTITENTS.

Sasesseaeeit2.44"roos lena cal Ss F 5 FSA SS Se =

| OFFICE. 8 SWITCOYK BOARD CHILLER S L ye _— SS SS ri ae Sa + % [ | Pr sae | Ys Beaded TRANSFORME, COMPART/IAN

¥e"wo0s S cto c” | RODS 3 COC 15-6 —_ 8-0.

STORE ROOM STORE PCO/.

£L.7#1L RACE TO.

ECTION DD. PROPOSED FAST CREEK DEVELOPMENT |

AT

INGHAM MILLS, NEW YORK

EN Buck; Nf Laveney,: GA fettermanns THE S/S ©

De

LY RI

SECTION GC THROUGH ¢ CF TURBINE & GENERATOR. .

76 —— S500 * 56+ 14-0" 4+ 9's" —— i

FRONT ELEVATION OF POWER HOUSE.

FROPOKD EAST CREEK DEVELOPMENT AT INGHAM MILLS, MEW YORK

EUG ff throm , EME, rq

4 _THE 515 ig

= a 5 TH : RATES OIE TERS NRF NN ERE

NOR ONS AS TISTISTISRTISA IN ONORTRIR PANTING UN OSTINTIN SERA MINNEAPOLIS

a Hy ; A =) = aS PUNO GS SUEUR A IIILAEIED

= Z, By YASH) eis je LAA Zp DMD

MIOK MIN 7 7/W WV HON/ aA ININADT/NICHIISI LO VI CHODOSS

ISNOH AIMOS JO NOILEATTIF FOS